Skip to main content

Trust Engine System

Overview

The Trust Engine is a sophisticated system for tracking, evaluating, and managing trust scores in decentralized recommendation networks. It provides a comprehensive framework for monitoring recommender performance, token metrics, and trading outcomes.

Core Components

1. Recommender Management

interface Recommender {
id: string; // Unique identifier
address: string; // Blockchain address
solanaPubkey?: string;
telegramId?: string;
discordId?: string;
twitterId?: string;
ip?: string;
}

The system tracks recommenders across multiple platforms and identifiers, enabling:

  • Cross-platform identity verification
  • Multi-channel recommendation tracking
  • Unified reputation management

2. Trust Metrics

interface RecommenderMetrics {
recommenderId: string;
trustScore: number; // Overall trust rating
totalRecommendations: number;
successfulRecs: number;
avgTokenPerformance: number;
riskScore: number;
consistencyScore: number;
virtualConfidence: number;
lastUpdated: Date;
}

Key metrics tracked:

  • Trust Score: Overall reliability rating
  • Success Rate: Ratio of successful recommendations
  • Risk Assessment: Evaluation of risk-taking behavior
  • Consistency: Pattern analysis of recommendations

3. Token Performance Tracking

interface TokenPerformance {
tokenAddress: string;
priceChange24h: number;
volumeChange24h: number;
trade_24h_change: number;
liquidity: number;
liquidityChange24h: number;
holderChange24h: number;
rugPull: boolean;
isScam: boolean;
marketCapChange24h: number;
sustainedGrowth: boolean;
rapidDump: boolean;
suspiciousVolume: boolean;
lastUpdated: Date;
}

Usage Guide

1. Initializing Trust Tracking

const trustDB = new TrustScoreDatabase(sqliteDb);

// Add a new recommender
const recommender = {
id: "uuid",
address: "0x...",
telegramId: "@username"
};
trustDB.addRecommender(recommender);

// Initialize metrics
trustDB.initializeRecommenderMetrics(recommender.id);

2. Tracking Recommendations

// Record a new token recommendation
const recommendation = {
id: "uuid",
recommenderId: recommender.id,
tokenAddress: "0x...",
timestamp: new Date(),
initialMarketCap: 1000000,
initialLiquidity: 500000,
initialPrice: 0.001
};
trustDB.addTokenRecommendation(recommendation);

3. Performance Monitoring

// Update token performance metrics
const performance = {
tokenAddress: "0x...",
priceChange24h: 15.5,
volumeChange24h: 25.0,
liquidity: 1000000,
holderChange24h: 5.2,
rugPull: false,
isScam: false,
// ... other metrics
};
trustDB.upsertTokenPerformance(performance);

4. Trade Tracking

// Record a trade based on recommendation
const trade = {
token_address: "0x...",
recommender_id: "uuid",
buy_price: 0.001,
buy_timeStamp: new Date().toISOString(),
buy_amount: 1000,
buy_sol: 1.5,
buy_value_usd: 1500,
buy_market_cap: 1000000,
buy_liquidity: 500000
};
trustDB.addTradePerformance(trade, false);

Trust Score Calculation

The system calculates trust scores based on multiple factors:

  1. Performance Metrics

    • Success rate of recommendations
    • Average token performance
    • Risk-adjusted returns
  2. Risk Factors

    const riskFactors = {
    rugPull: -1.0, // Maximum penalty
    scam: -0.8, // Severe penalty
    rapidDump: -0.4, // Moderate penalty
    suspicious: -0.2 // Minor penalty
    };
  3. Historical Analysis

    • Performance consistency
    • Long-term success rate
    • Risk pattern analysis

Best Practices

1. Regular Updates

// Update metrics regularly
function updateRecommenderMetrics(recommenderId: string) {
const metrics = calculateUpdatedMetrics(recommenderId);
trustDB.updateRecommenderMetrics(metrics);
trustDB.logRecommenderMetricsHistory(recommenderId);
}

2. Risk Management

  1. Monitor suspicious patterns:

    const riskFlags = {
    rapidPriceChange: price24h > 100,
    lowLiquidity: liquidity < minLiquidityThreshold,
    suspiciousVolume: volume24h > marketCap
    };
  2. Implement automatic warnings:

    if (metrics.riskScore > riskThreshold) {
    triggerRiskAlert(recommenderId);
    }

3. Performance Tracking

// Track historical performance
const history = trustDB.getRecommenderMetricsHistory(recommenderId);
const performanceTrend = analyzePerformanceTrend(history);

Advanced Features

1. Simulation Support

// Test strategies without affecting real metrics
trustDB.addTradePerformance(trade, true); // Simulation mode

2. Cross-Platform Verification

const verifyIdentity = async (recommender: Recommender) => {
const telegramVerified = await verifyTelegram(recommender.telegramId);
const walletVerified = await verifyWallet(recommender.address);
return telegramVerified && walletVerified;
};

3. Historical Analysis

const analyzeRecommenderHistory = (recommenderId: string) => {
const recommendations = trustDB.getRecommendationsByRecommender(recommenderId);
const metrics = trustDB.getRecommenderMetrics(recommenderId);
const history = trustDB.getRecommenderMetricsHistory(recommenderId);

return {
successRate: metrics.successfulRecs / metrics.totalRecommendations,
averagePerformance: metrics.avgTokenPerformance,
riskProfile: calculateRiskProfile(history),
consistencyScore: metrics.consistencyScore
};
};

Security Considerations

  1. Data Integrity

    • Use foreign key constraints
    • Implement transaction management
    • Regular backup of metrics history
  2. Fraud Prevention

    // Implement rate limiting
    const checkRateLimit = (recommenderId: string) => {
    const recentRecs = getRecentRecommendations(recommenderId, timeWindow);
    return recentRecs.length < maxRecommendations;
    };
  3. Identity Verification

    • Cross-reference multiple identifiers
    • Implement progressive trust building
    • Regular verification checks

Future Enhancements

  1. Machine Learning Integration

    • Pattern recognition for fraud detection
    • Automated risk assessment
    • Predictive analytics for recommendation quality
  2. Decentralized Validation

    • Peer verification system
    • Consensus-based trust scoring
    • Distributed reputation management
  3. Enhanced Metrics

    • Market sentiment analysis
    • Social signal integration
    • Network effect measurement

Additional Resources

Remember to regularly monitor and adjust trust parameters based on market conditions and system performance.