Trust Engine System
Overview
The Trust Engine is a sophisticated system for tracking, evaluating, and managing trust scores in decentralized recommendation networks. It provides a comprehensive framework for monitoring recommender performance, token metrics, and trading outcomes.
Core Components
1. Recommender Management
interface Recommender {
id: string; // Unique identifier
address: string; // Blockchain address
solanaPubkey?: string;
telegramId?: string;
discordId?: string;
twitterId?: string;
ip?: string;
}
The system tracks recommenders across multiple platforms and identifiers, enabling:
- Cross-platform identity verification
- Multi-channel recommendation tracking
- Unified reputation management
2. Trust Metrics
interface RecommenderMetrics {
recommenderId: string;
trustScore: number; // Overall trust rating
totalRecommendations: number;
successfulRecs: number;
avgTokenPerformance: number;
riskScore: number;
consistencyScore: number;
virtualConfidence: number;
lastUpdated: Date;
}
Key metrics tracked:
- Trust Score: Overall reliability rating
- Success Rate: Ratio of successful recommendations
- Risk Assessment: Evaluation of risk-taking behavior
- Consistency: Pattern analysis of recommendations
3. Token Performance Tracking
interface TokenPerformance {
tokenAddress: string;
priceChange24h: number;
volumeChange24h: number;
trade_24h_change: number;
liquidity: number;
liquidityChange24h: number;
holderChange24h: number;
rugPull: boolean;
isScam: boolean;
marketCapChange24h: number;
sustainedGrowth: boolean;
rapidDump: boolean;
suspiciousVolume: boolean;
lastUpdated: Date;
}
Usage Guide
1. Initializing Trust Tracking
const trustDB = new TrustScoreDatabase(sqliteDb);
// Add a new recommender
const recommender = {
id: "uuid",
address: "0x...",
telegramId: "@username"
};
trustDB.addRecommender(recommender);
// Initialize metrics
trustDB.initializeRecommenderMetrics(recommender.id);
2. Tracking Recommendations
// Record a new token recommendation
const recommendation = {
id: "uuid",
recommenderId: recommender.id,
tokenAddress: "0x...",
timestamp: new Date(),
initialMarketCap: 1000000,
initialLiquidity: 500000,
initialPrice: 0.001
};
trustDB.addTokenRecommendation(recommendation);
3. Performance Monitoring
// Update token performance metrics
const performance = {
tokenAddress: "0x...",
priceChange24h: 15.5,
volumeChange24h: 25.0,
liquidity: 1000000,
holderChange24h: 5.2,
rugPull: false,
isScam: false,
// ... other metrics
};
trustDB.upsertTokenPerformance(performance);
4. Trade Tracking
// Record a trade based on recommendation
const trade = {
token_address: "0x...",
recommender_id: "uuid",
buy_price: 0.001,
buy_timeStamp: new Date().toISOString(),
buy_amount: 1000,
buy_sol: 1.5,
buy_value_usd: 1500,
buy_market_cap: 1000000,
buy_liquidity: 500000
};
trustDB.addTradePerformance(trade, false);
Trust Score Calculation
The system calculates trust scores based on multiple factors:
-
Performance Metrics
- Success rate of recommendations
- Average token performance
- Risk-adjusted returns
-
Risk Factors
const riskFactors = {
rugPull: -1.0, // Maximum penalty
scam: -0.8, // Severe penalty
rapidDump: -0.4, // Moderate penalty
suspicious: -0.2 // Minor penalty
}; -
Historical Analysis
- Performance consistency
- Long-term success rate
- Risk pattern analysis
Best Practices
1. Regular Updates
// Update metrics regularly
function updateRecommenderMetrics(recommenderId: string) {
const metrics = calculateUpdatedMetrics(recommenderId);
trustDB.updateRecommenderMetrics(metrics);
trustDB.logRecommenderMetricsHistory(recommenderId);
}
2. Risk Management
-
Monitor suspicious patterns:
const riskFlags = {
rapidPriceChange: price24h > 100,
lowLiquidity: liquidity < minLiquidityThreshold,
suspiciousVolume: volume24h > marketCap
}; -
Implement automatic warnings:
if (metrics.riskScore > riskThreshold) {
triggerRiskAlert(recommenderId);
}
3. Performance Tracking
// Track historical performance
const history = trustDB.getRecommenderMetricsHistory(recommenderId);
const performanceTrend = analyzePerformanceTrend(history);
Advanced Features
1. Simulation Support
// Test strategies without affecting real metrics
trustDB.addTradePerformance(trade, true); // Simulation mode
2. Cross-Platform Verification
const verifyIdentity = async (recommender: Recommender) => {
const telegramVerified = await verifyTelegram(recommender.telegramId);
const walletVerified = await verifyWallet(recommender.address);
return telegramVerified && walletVerified;
};
3. Historical Analysis
const analyzeRecommenderHistory = (recommenderId: string) => {
const recommendations = trustDB.getRecommendationsByRecommender(recommenderId);
const metrics = trustDB.getRecommenderMetrics(recommenderId);
const history = trustDB.getRecommenderMetricsHistory(recommenderId);
return {
successRate: metrics.successfulRecs / metrics.totalRecommendations,
averagePerformance: metrics.avgTokenPerformance,
riskProfile: calculateRiskProfile(history),
consistencyScore: metrics.consistencyScore
};
};
Security Considerations
-
Data Integrity
- Use foreign key constraints
- Implement transaction management
- Regular backup of metrics history
-
Fraud Prevention
// Implement rate limiting
const checkRateLimit = (recommenderId: string) => {
const recentRecs = getRecentRecommendations(recommenderId, timeWindow);
return recentRecs.length < maxRecommendations;
}; -
Identity Verification
- Cross-reference multiple identifiers
- Implement progressive trust building
- Regular verification checks
Future Enhancements
-
Machine Learning Integration
- Pattern recognition for fraud detection
- Automated risk assessment
- Predictive analytics for recommendation quality
-
Decentralized Validation
- Peer verification system
- Consensus-based trust scoring
- Distributed reputation management
-
Enhanced Metrics
- Market sentiment analysis
- Social signal integration
- Network effect measurement
Additional Resources
Remember to regularly monitor and adjust trust parameters based on market conditions and system performance.