Skip to main content

Autonomous Trading System

Overview

Eliza's autonomous trading system provides a sophisticated framework for monitoring market conditions, analyzing tokens, and executing trades on Solana-based decentralized exchanges. The system combines real-time market data, technical analysis, and risk management to make informed trading decisions.

Core Components

1. Token Analysis Engine

The system tracks multiple market indicators:

interface TokenPerformance {
priceChange24h: number;
volumeChange24h: number;
trade_24h_change: number;
liquidity: number;
liquidityChange24h: number;
holderChange24h: number;
rugPull: boolean;
isScam: boolean;
marketCapChange24h: number;
sustainedGrowth: boolean;
rapidDump: boolean;
suspiciousVolume: boolean;
}

2. Order Book Management

interface Order {
userId: string;
ticker: string;
contractAddress: string;
timestamp: string;
buyAmount: number;
price: number;
}

3. Market Data Integration

The system integrates with multiple data sources:

  • BirdEye API for real-time market data
  • DexScreener for liquidity analysis
  • Helius for on-chain data

Trading Features

1. Real-Time Market Analysis

const PROVIDER_CONFIG = {
BIRDEYE_API: "https://public-api.birdeye.so",
MAX_RETRIES: 3,
RETRY_DELAY: 2000,
TOKEN_SECURITY_ENDPOINT: "/defi/token_security?address=",
TOKEN_TRADE_DATA_ENDPOINT: "/defi/v3/token/trade-data/single?address="
};

Key metrics monitored:

  • Price movements
  • Volume changes
  • Liquidity levels
  • Holder distribution
  • Trading patterns

2. Risk Assessment System

The system evaluates multiple risk factors:

async analyzeRisks(token: string) {
const risks = {
liquidityRisk: await checkLiquidity(),
holderConcentration: await analyzeHolderDistribution(),
priceVolatility: await calculateVolatility(),
marketManipulation: await detectManipulation()
};
return risks;
}

3. Trading Strategies

Market Analysis

async getProcessedTokenData(): Promise<ProcessedTokenData> {
const security = await this.fetchTokenSecurity();
const tradeData = await this.fetchTokenTradeData();
const dexData = await this.fetchDexScreenerData();
const holderDistributionTrend = await this.analyzeHolderDistribution(tradeData);
// ... additional analysis
}

Trade Execution

interface TradePerformance {
token_address: string;
buy_price: number;
sell_price: number;
buy_timeStamp: string;
sell_timeStamp: string;
profit_percent: number;
market_cap_change: number;
liquidity_change: number;
}

Configuration Options

1. Trading Parameters

const tradingConfig = {
minLiquidity: 50000, // Minimum liquidity in USD
maxSlippage: 0.02, // Maximum allowed slippage
positionSize: 0.01, // Position size as percentage of portfolio
stopLoss: 0.05, // Stop loss percentage
takeProfit: 0.15 // Take profit percentage
};

2. Risk Management Settings

const riskSettings = {
maxDrawdown: 0.20, // Maximum portfolio drawdown
maxPositionSize: 0.10, // Maximum single position size
minLiquidityRatio: 50, // Minimum liquidity to market cap ratio
maxHolderConcentration: 0.20 // Maximum single holder concentration
};

Implementation Guide

1. Setting Up Market Monitoring

async monitorMarket(token: string) {
const provider = new TokenProvider(token);
const marketData = await provider.getProcessedTokenData();

return {
price: marketData.tradeData.price,
volume: marketData.tradeData.volume_24h,
liquidity: marketData.tradeData.liquidity,
holderMetrics: marketData.security
};
}

2. Implementing Trading Logic

async evaluateTradeOpportunity(token: string) {
const analysis = await this.getProcessedTokenData();

const signals = {
priceSignal: analysis.tradeData.price_change_24h > 0,
volumeSignal: analysis.tradeData.volume_24h_change_percent > 20,
liquiditySignal: analysis.tradeData.liquidity > MIN_LIQUIDITY,
holderSignal: analysis.holderDistributionTrend === "increasing"
};

return signals.priceSignal && signals.volumeSignal &&
signals.liquiditySignal && signals.holderSignal;
}

3. Risk Management Implementation

async checkTradeRisks(token: string): Promise<boolean> {
const security = await this.fetchTokenSecurity();
const tradeData = await this.fetchTokenTradeData();

return {
isRugPull: security.ownerPercentage > 50,
isPumpAndDump: tradeData.price_change_24h > 100,
isLowLiquidity: tradeData.liquidity < MIN_LIQUIDITY,
isSuspiciousVolume: tradeData.suspiciousVolume
};
}

Performance Monitoring

1. Trade Tracking

async trackTradePerformance(trade: TradePerformance): Promise<void> {
const performance = {
entryPrice: trade.buy_price,
exitPrice: trade.sell_price,
profitLoss: trade.profit_percent,
holdingPeriod: calculateHoldingPeriod(
trade.buy_timeStamp,
trade.sell_timeStamp
),
marketImpact: trade.market_cap_change
};

await this.logTradePerformance(performance);
}

2. Portfolio Analytics

async analyzePortfolioPerformance(userId: string) {
const trades = await this.getTradeHistory(userId);
return {
totalTrades: trades.length,
winRate: calculateWinRate(trades),
averageReturn: calculateAverageReturn(trades),
maxDrawdown: calculateMaxDrawdown(trades),
sharpeRatio: calculateSharpeRatio(trades)
};
}

Best Practices

  1. Risk Management

    • Always implement stop-loss orders
    • Diversify trading positions
    • Monitor liquidity levels continuously
    • Set maximum position sizes
  2. Trade Execution

    • Use slippage protection
    • Implement rate limiting
    • Monitor gas costs
    • Verify transaction success
  3. Market Analysis

    • Cross-reference multiple data sources
    • Implement data validation
    • Monitor market manipulation indicators
    • Track historical patterns
  4. System Maintenance

    • Regular performance reviews
    • Strategy backtesting
    • Risk parameter adjustments
    • System health monitoring

Security Considerations

  1. Transaction Security

    • Implement transaction signing
    • Verify contract addresses
    • Monitor for malicious tokens
    • Implement rate limiting
  2. Data Validation

    • Verify data sources
    • Implement error handling
    • Monitor for anomalies
    • Cross-validate market data

Additional Resources

Remember to thoroughly test all trading strategies in a sandbox environment before deploying to production.