Autonomous Trading System
Overview
Eliza's autonomous trading system provides a sophisticated framework for monitoring market conditions, analyzing tokens, and executing trades on Solana-based decentralized exchanges. The system combines real-time market data, technical analysis, and risk management to make informed trading decisions.
Core Components
1. Token Analysis Engine
The system tracks multiple market indicators:
interface TokenPerformance {
priceChange24h: number;
volumeChange24h: number;
trade_24h_change: number;
liquidity: number;
liquidityChange24h: number;
holderChange24h: number;
rugPull: boolean;
isScam: boolean;
marketCapChange24h: number;
sustainedGrowth: boolean;
rapidDump: boolean;
suspiciousVolume: boolean;
}
2. Order Book Management
interface Order {
userId: string;
ticker: string;
contractAddress: string;
timestamp: string;
buyAmount: number;
price: number;
}
3. Market Data Integration
The system integrates with multiple data sources:
- BirdEye API for real-time market data
- DexScreener for liquidity analysis
- Helius for on-chain data
Trading Features
1. Real-Time Market Analysis
const PROVIDER_CONFIG = {
BIRDEYE_API: "https://public-api.birdeye.so",
MAX_RETRIES: 3,
RETRY_DELAY: 2000,
TOKEN_SECURITY_ENDPOINT: "/defi/token_security?address=",
TOKEN_TRADE_DATA_ENDPOINT: "/defi/v3/token/trade-data/single?address="
};
Key metrics monitored:
- Price movements
- Volume changes
- Liquidity levels
- Holder distribution
- Trading patterns
2. Risk Assessment System
The system evaluates multiple risk factors:
async analyzeRisks(token: string) {
const risks = {
liquidityRisk: await checkLiquidity(),
holderConcentration: await analyzeHolderDistribution(),
priceVolatility: await calculateVolatility(),
marketManipulation: await detectManipulation()
};
return risks;
}
3. Trading Strategies
Market Analysis
async getProcessedTokenData(): Promise<ProcessedTokenData> {
const security = await this.fetchTokenSecurity();
const tradeData = await this.fetchTokenTradeData();
const dexData = await this.fetchDexScreenerData();
const holderDistributionTrend = await this.analyzeHolderDistribution(tradeData);
// ... additional analysis
}
Trade Execution
interface TradePerformance {
token_address: string;
buy_price: number;
sell_price: number;
buy_timeStamp: string;
sell_timeStamp: string;
profit_percent: number;
market_cap_change: number;
liquidity_change: number;
}
Configuration Options
1. Trading Parameters
const tradingConfig = {
minLiquidity: 50000, // Minimum liquidity in USD
maxSlippage: 0.02, // Maximum allowed slippage
positionSize: 0.01, // Position size as percentage of portfolio
stopLoss: 0.05, // Stop loss percentage
takeProfit: 0.15 // Take profit percentage
};
2. Risk Management Settings
const riskSettings = {
maxDrawdown: 0.20, // Maximum portfolio drawdown
maxPositionSize: 0.10, // Maximum single position size
minLiquidityRatio: 50, // Minimum liquidity to market cap ratio
maxHolderConcentration: 0.20 // Maximum single holder concentration
};
Implementation Guide
1. Setting Up Market Monitoring
async monitorMarket(token: string) {
const provider = new TokenProvider(token);
const marketData = await provider.getProcessedTokenData();
return {
price: marketData.tradeData.price,
volume: marketData.tradeData.volume_24h,
liquidity: marketData.tradeData.liquidity,
holderMetrics: marketData.security
};
}
2. Implementing Trading Logic
async evaluateTradeOpportunity(token: string) {
const analysis = await this.getProcessedTokenData();
const signals = {
priceSignal: analysis.tradeData.price_change_24h > 0,
volumeSignal: analysis.tradeData.volume_24h_change_percent > 20,
liquiditySignal: analysis.tradeData.liquidity > MIN_LIQUIDITY,
holderSignal: analysis.holderDistributionTrend === "increasing"
};
return signals.priceSignal && signals.volumeSignal &&
signals.liquiditySignal && signals.holderSignal;
}
3. Risk Management Implementation
async checkTradeRisks(token: string): Promise<boolean> {
const security = await this.fetchTokenSecurity();
const tradeData = await this.fetchTokenTradeData();
return {
isRugPull: security.ownerPercentage > 50,
isPumpAndDump: tradeData.price_change_24h > 100,
isLowLiquidity: tradeData.liquidity < MIN_LIQUIDITY,
isSuspiciousVolume: tradeData.suspiciousVolume
};
}
Performance Monitoring
1. Trade Tracking
async trackTradePerformance(trade: TradePerformance): Promise<void> {
const performance = {
entryPrice: trade.buy_price,
exitPrice: trade.sell_price,
profitLoss: trade.profit_percent,
holdingPeriod: calculateHoldingPeriod(
trade.buy_timeStamp,
trade.sell_timeStamp
),
marketImpact: trade.market_cap_change
};
await this.logTradePerformance(performance);
}
2. Portfolio Analytics
async analyzePortfolioPerformance(userId: string) {
const trades = await this.getTradeHistory(userId);
return {
totalTrades: trades.length,
winRate: calculateWinRate(trades),
averageReturn: calculateAverageReturn(trades),
maxDrawdown: calculateMaxDrawdown(trades),
sharpeRatio: calculateSharpeRatio(trades)
};
}
Best Practices
-
Risk Management
- Always implement stop-loss orders
- Diversify trading positions
- Monitor liquidity levels continuously
- Set maximum position sizes
-
Trade Execution
- Use slippage protection
- Implement rate limiting
- Monitor gas costs
- Verify transaction success
-
Market Analysis
- Cross-reference multiple data sources
- Implement data validation
- Monitor market manipulation indicators
- Track historical patterns
-
System Maintenance
- Regular performance reviews
- Strategy backtesting
- Risk parameter adjustments
- System health monitoring
Security Considerations
-
Transaction Security
- Implement transaction signing
- Verify contract addresses
- Monitor for malicious tokens
- Implement rate limiting
-
Data Validation
- Verify data sources
- Implement error handling
- Monitor for anomalies
- Cross-validate market data
Additional Resources
Remember to thoroughly test all trading strategies in a sandbox environment before deploying to production.